On Solutions of General Nonlinear Stochastic Integral Equations

نویسنده

  • K. BALACHANDRAN
چکیده

Stochastic or random integral equations are extremely important in the study of many physical phenomena in life sciences and engineering [3, 14, 16]. There are currently two basic versions of stochastic integral equations being studied by probabilists and mathematical statisticians, namely, those integral equations involving Ito-Doob type of stochastic integrals and those which can be formed as probabilistic analogues of classical deterministic integral equations whose formulation involves the usual Lebesgue integral. Equations of the later category have been studied extensively. Several papers have appeared on the problem of existence of solutions of nonlinear stochastic integral equations, and the results are established by using various fixed point techniques [1, 6–11]. Further, asymptotic behavior and stability of solutions of stochastic integral equations are discussed in [2, 4, 5, 12, 13]. In this paper we will prove an existence and uniqueness theorem for a general class of nonlinear stochastic integral equations and to investigate the asymptotic behavior of their solutions. The results are based on a construction of the real Banach space of tempered functions, which contains the space D([0,∞)) of real right continuous functions having left-hand limits. The results of this paper generalize the results of Szynal and Wȩdrychowicz [15].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

متن کامل

Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral ‎Equations‎

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

متن کامل

Wilson wavelets for solving nonlinear stochastic integral equations

A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations

In this article, a new numerical method based on triangular functions for solving  nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...

متن کامل

Analysis of convergence of solution of general fuzzy integral equation with nonlinear fuzzy kernels

Fuzzy integral equations have a major role in the mathematics and applications.In this paper, general fuzzy integral equations with nonlinear fuzzykernels are introduced. The existence and uniqueness of their solutions areapproved and an upper bound for them are determined. Finally an algorithmis drawn to show theorems better.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006